High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition.

نویسندگان

  • David A Porter
  • Robin M Heidemann
چکیده

Single-shot echo-planar imaging (EPI) is well established as the method of choice for clinical, diffusion-weighted imaging with MRI because of its low sensitivity to the motion-induced phase errors that occur during diffusion sensitization of the MR signal. However, the method is prone to artifacts due to susceptibility changes at tissue interfaces and has a limited spatial resolution. The introduction of parallel imaging techniques, such as GRAPPA (GeneRalized Autocalibrating Partially Parallel Acquisitions), has reduced these problems, but there are still significant limitations, particularly at higher field strengths, such as 3 Tesla (T), which are increasingly being used for routine clinical imaging. This study describes how the combination of readout-segmented EPI and parallel imaging can be used to address these issues by generating high-resolution, diffusion-weighted images at 1.5T and 3T with a significant reduction in susceptibility artifact compared with the single-shot case. The technique uses data from a 2D navigator acquisition to perform a nonlinear phase correction and to control the real-time reacquisition of unusable data that cannot be corrected. Measurements on healthy volunteers demonstrate that this approach provides a robust correction for motion-induced phase artifact and allows scan times that are suitable for routine clinical application.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D steady-state diffusion-weighted imaging with trajectory using radially batched internal navigator echoes (TURBINE).

While most diffusion-weighted imaging (DWI) is acquired using single-shot diffusion-weighted spin-echo echo-planar imaging, steady-state DWI is an alternative method with the potential to achieve higher-resolution images with less distortion. Steady-state DWI is, however, best suited to a segmented three-dimensional acquisition and thus requires three-dimensional navigation to fully correct for...

متن کامل

Diffusion imaging in humans at 7T using readout-segmented EPI and GRAPPA.

Anatomical MRI studies at 7T have demonstrated the ability to provide high-quality images of human tissue in vivo. However, diffusion-weighted imaging at 7T is limited by the increased level of artifact associated with standard, single-shot, echo-planar imaging, even when parallel imaging techniques such as generalized autocalibrating partially parallel acquisitions (GRAPPA) are used to reduce ...

متن کامل

Time-Optimized High-Resolution Readout-Segmented Diffusion Tensor Imaging

Readout-segmented echo planar imaging with 2D navigator-based reacquisition is an uprising technique enabling the sampling of high-resolution diffusion images with reduced susceptibility artifacts. However, low signal from the small voxels and long scan times hamper the clinical applicability. Therefore, we introduce a regularization algorithm based on total variation that is applied directly o...

متن کامل

High-resolution, Anatomically-accurate Diffusion-weighted Imaging of Orbital and Sinonasal Lesions with RESOLVE

Diffusion-weighted imaging is a core sequence in clinical routine imaging for many anatomical regions including the brain, abdomen, breasts, and pelvis [1, 2]. Conventionally, diffusion-weighted imaging is acquired using a single-shot diffusion-weighted echo planar imaging (EPI) sequence with the primary advantages of insensitivity to motion-induced phase errors and relatively short acquisition...

متن کامل

Correction for Involuntary Motion Related Artifacts in Multi-Shot EPI using k-space Data Swapping

Phase corrections based on readout-asymmetry and navigatorechoes can effectively reduce the motion-related phase errors in multi-shot EPI for diffusion weighted imaging studies. However, occasional involuntary motions might be too severe to be corrected by the navigator echoes. To minimize this effect, kspace data swapping technique is proposed in this study. By replacing the corrupted k-space ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 62 2  شماره 

صفحات  -

تاریخ انتشار 2009